

Projektergebnisse EASyQuart:

Sensitivitätsanalyse und Unsicherheitsanalyse

Katrin Lubashevsky (HTWK) Simon Richter (HTWK)

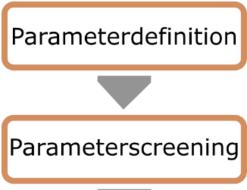
1. Sensitivitätsanalyse

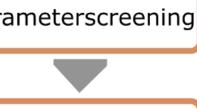
aufgrund eines Beschlusses des Deutschen Bundestages

Motivation:

Welche Parameter sollten im Vorfeld der Planung einer Geothermieanlage im oberflächennahen Raum besonders genau untersucht werden?

→ Variation ausgewählter Parameter innerhalb des jeweils auftretenden Wertbereichs, um deren Einfluss auf eine Zielgröße gegenüberzustellen.





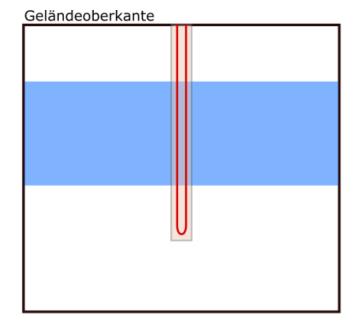
1.1 Sensitivitätsanalyse - Vorgehensweise

Parameterauswahl und Definition von Wertebereichen

Parameterranking zur Reduzierung der Parameterauswahl

Approximiertes Modell (Proxy) auf Basis von OGS-Berechnungen

Berechnung von Sensitivitätsindizes nach Sobol' mit dem Proxy



1.1 Sensitivitätsanalyse - Vorgehensweise

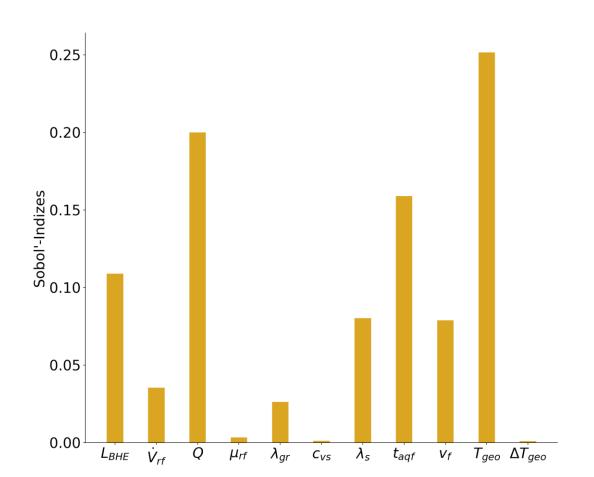
aufgrund eines Beschlusses des Deutschen Bundestages

- Vereinfachter geologischer Modellaufbau in OGS, um grundsätzliche Zusammenhänge zu erfassen
- Eine Doppel-U-Rohr Sonde
- Simulationszeitraum ein Jahr
- Ergebnisgröße: Mittlere Fluidtemperatur in der Sonde zum Zeitpunkt nach einem Jahr

Querschnitt des Modellbereiches

Vom Grundwasser durchströmter Bereich

Erdsonde



1.2 Sensitivitätsanalyse - Ergebnisse

Parameter der Erdwärmesonde	
L_{BHE}	Sondenlänge
μ_{rf}	Dynamische Viskosität des Kältemittels
λ_{gr}	Wärmeleitfähigkeit des Verpressmaterials
\dot{V}_{rf}	Durchflussrate des Kältemittels
Q	Jahreswärmeenergiebedarf
Parameter des geologischen Untergrundes	
λ_s	Wärmeleitfähigkeit des geologischen Untergrundes
c_{sd}	Spez. volumetrische Wärmekapazität des Gesteins
t_{aqf}	Mächtigkeit des vom Grundwasser durchströmten Bereiches
v_f	Darcygeschwindigkeit
ΔT_{geo}	Geothermischer Gradient
T_{geo}	Variation der Modelltemperatur



Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages

1.3 Sensitivitätsanalyse - Zusammenfassung

- Modelltemperatur und Heizlast haben den größten Einfluss auf die Fluidtemperatur
- Der vom Grundwasser umströmte Anteil der Sonde ist für die Performance entscheidender als die Darcygeschwindigkeit der Grundwasserströmung
- Vergleichbarer Einfluss der Wärmeleitfähigkeit im geologischen Untergrund und der Darcygeschwindigkeit des Grundwassers
- Die spezifische Wärmekapazität des Untergrundes und die Viskosität des Sondenfluides haben einen vergleichsweise geringen Einfluss
- Auch der geothermische Gradient zeigt aufgrund der geringen Tiefe oberflächennaher Anlagen kaum einen Einfluss

2. Unsicherheitsanalyse

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Motivation:

Welche Unsicherheiten können sich in der Auslegung einer Geothermieanlage ergeben und ist eine Abschätzung der Unsicherheit im Planungsprozess sinnvoll?

→ Standortspezifische Variation der Eingangsparameter in Unsicherheitsbereichen, um die Auswirkungen auf die Zielgröße zu ermitteln.

2.1 Unsicherheitsanalyse - Vorgehensweise

Bundesministerium für Wirtschaft und Klimaschutz

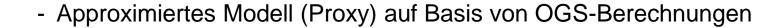
Gefördert durch:

- Betrachtung der Unsicherheit für einen fiktiven Standort
- Anlehnung der Modellparameter an die Region Leipzig
- Basis ist eine Auslegung mittels der Software Earth-Energy-Designer
- Betrachtung der Unsicherheit nach 5 Jahren
- Bemessung anhand der Fluidtemperatur bei Eintritt in die Sonde
- Auswertung zum Zeitpunkt mit der minimalen Fluidtemperatur

Bundesministerium für Wirtschaft und Klimaschutz

geoENERGIE

2.1 Unsicherheitsanalyse - Vorgehensweise


aufgrund eines Beschlusses des Deutschen Bundestages

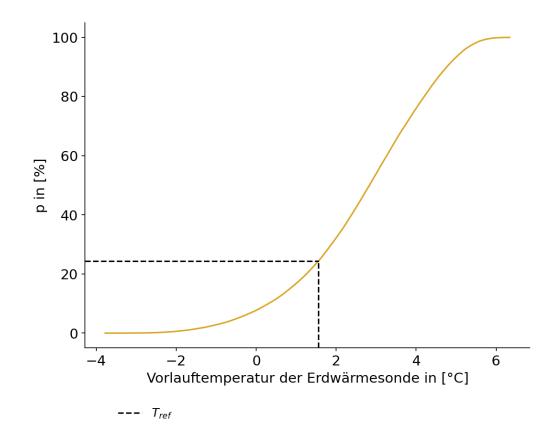
Parameterdefinition

Definition von Unsicherheitsbereichen für die einflussreichsten Parameter der Sensitivitätsanalyse

Proxy-Building

Unsicherheitanalyse

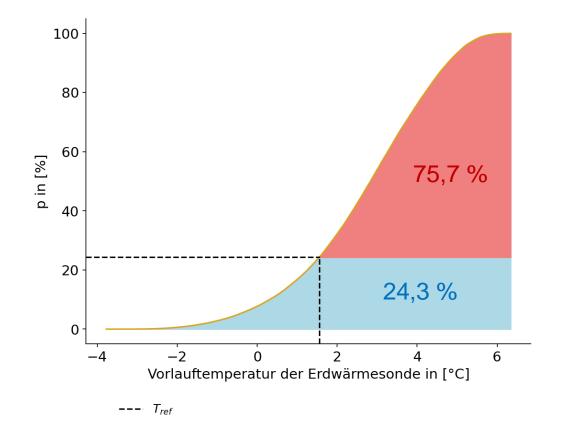
- Berechnung von 100.000 Parametervariationen
- Auswertung der Unsicherheit anhand von Häufigkeitsverteilungen



2.2 Unsicherheitsanalyse - Ergebnisse

Betrachtung der Unsicherheit anhand der kumulativen Verteilungsfunktion der Stichprobe

Gefördert durch:



2.2 Unsicherheitsanalyse - Ergebnisse

Betrachtung der Unsicherheit anhand der kumulativen Verteilungsfunktion der Stichprobe

Gefördert durch:

2.3 Unsicherheitsanalyse - Zusammenfassung

- Konservativer Charakter der Auslegung von EED, durch Vernachlässigung von Grundwasserströmungen
- Bei Betriebsdauern von 25 bis 50 Jahren ist von höheren Unsicherheiten für niedrigere Temperaturen auszugehen
- Die Ausmaße der beispielhaft ermittelten Unsicherheiten verdeutlichen das Potenzial einer Unsicherheitsanalyse bei der Auslegung der Geothermieanlagen
 - Werden mit der Auslegung entsprechende Temperaturgrenzen eingehalten?
 - Wo können große Unsicherheiten reduziert werden, um weniger konservativ auszulegen?
- Für die Praxistauglichkeit besteht weiterer Forschungsbedarf hinsichtlich der Methodik vor allem zur Reduzierung des Rechenaufwandes

Vielen Dank für die Aufmerksamkeit!

